APPENDIX D

EQUATIONS USED IN PUMPING & FLOW COMPUTATIONS, RE-ENGINEERED DW PROJECT

EQUATIONS USED IN PUMPING & FLOW COMPUTATIONS, RE-ENGINEERED DW PROJECT

• Discharge equation :

$$Q = CA\sqrt{2gh}$$
 (1)

Where,

Q = the design flow rate in cfs

C = discharge coefficient (a conservative value of C=0.6, Ref. 36)

A = Area of the gate opening in square ft

h = head available at the gate in ft

g = acceleration of gravity in feet per second (fps)

Average velocity at the gate is given by

$$V = \frac{Q}{Wxd} \dots (2)$$

Where,

Q = the design flow rate in cfs

W = clear gate width (ft)

d = depth of gate opening (ft)

 $A = W \times d$

Velocity at the pump intake is given under the design flow rate Q by

$$V = \frac{Q}{(N)\frac{\Pi}{4}D^2} \tag{3}$$

Where,

N = number of intake pipes (pumps), and

D = diameter of intake pipes (ft).

Manning's Equation (Ref. 36)

$$Q = \frac{1.49}{n} A R^{2/3} S^{1/2} \dots (4)$$

Where,

Q = the design flow rate in cfs

A = Area of the gate opening in square ft

R = hydraulic radius of the flow ft

S = slope

$$n = \frac{R^{1/6}}{23.85 + 21.95 \log(R/D_{50})}$$
 (Ref. 33)

Where,

D 50 is the mean rock size.

• Froude Number of flow (Ref. 34)

$$F1 = \frac{V1}{\sqrt{gy1}} \dots (6)$$

Where,

V1 = flow velocity (just downstream of a gate)

y1 = flow depth prior to the jump (just downstream of a gate)

g = acceleration of gravity in feet per second (fps)

• The sequent depth is calculated by the formula (Ref. 34):

$$y2 = 0.5y1(\sqrt{8F1^2 + 1} - 1)$$
....(7)

Where,

y2 = sequent depth following a hydraulic jump,

y1 = flow depth prior to the jump (just downstream of a gate)

F1 = Froude number of the flow (just downstream of a gate)

Design flow rate for the pumps:

$$q = \frac{Q}{N}$$
 (8)

Where,

N = number of intake pumps, and

Q = the design flow rate in cfs

'q' was 500 cfs for all facilities

• Bernoulli's equation to calculate the total dynamic head (TDH) on the pump unit (Ref. 35).

$$TDH = W.S.elev_{River} - W.S.elev_{Re\ servoir} + H_{Loss}$$
(9)

$$TDH = W.S.elev_{River} - W.S.elev_{Re\,servoir} + h_{fs} + h_{con} + h_{tr} + h_{en} + h_{ben} + h_{pipef} + h_{val} + h_{exit}$$
(10)

Where,

h_{fs} = Head loss in Fish Screen,

h_{con} = convergence loss from river to gate,

h_{tr} = head loss in Trash Rack,

h_{en} = entrance loss at pipe inlet,

 h_{ben} = bending loss in the pipe,

 h_{pipef} = pipe friction loss,

h_{val} = valve losses,

 $h_{exit} = exit loss.$

Required installation pump capacity was calculated as follows:

$$hp = \frac{\gamma qh}{550\eta} \tag{11}$$

$$kw = 0.746hp$$
 (12)

Where,

hp = pump horse power,

 γ = water unit weight, 62.4 lbs./c.ft,

q = design flow, cfs

h = Total dynamic head, ft

 η = combined pump and motor efficiency, 87%

kw = kilowatt.

Head Loss in Fish Screen, h_{fs}:

Head loss in the Fish Screen was assumed to be zero since the velocity at the fish screen is only 0.2 fps which makes the velocity head $(V^2/2g)$ very low.

Head Loss during convergence from river to the gate and reservoir to gate, h_{con}:

Head loss coefficient of 0.5 was used for a square enterance (Ref. 34)

$$h_{con} = 0.5 \frac{V^2}{2g}$$
(13)

• Head Loss in the Trash Rack, h_{tr} (Ref. 35):

$$h_{tr} = K_t \frac{Vn^2}{2g} \qquad (14)$$

Where,

Kt = trash rack loss coefficient (Ref. 35),

$$K_{t} = 1.45 - 0.45 \left(\frac{a_{n}}{a_{g}}\right) - \left(\frac{a_{n}}{a_{g}}\right)^{2}$$
(15)

Where,

a_n=area through the trash rack bars,

a_q=gross area of trash rack and supports,

V_n=velocity through the net trash rack area.

Entrance Loss due to sudden contraction at pipe inlet, hen (Ref. 34):

$$h_{en} = 0.31 \frac{V^2}{2g}$$
 (16)

• Bending Loss in pipe, h_{ben} (Ref. 37):

$$h_{ben} = 0.4 \frac{V^2}{2g}$$
 (17)

Head Loss due to pipe friction, h_{pipef} (Ref. 37):

$$h_{pipef} = \frac{4.66n^2Q^2L}{D^{16/3}} \qquad(18)$$

• Valve Loss, h_{val} (Ref. 37):

$$h_{val} = 0.2 \frac{V^2}{2g}$$
 (19)

Exit Loss, h_{exit}:

$$h_{exit} = 1.0 \frac{V^2}{2g}$$
 (20)